

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 **А**стана +7(7172)727-132 **Б**елгород (4722)40-23-64 **Б**рянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 **Е**катеринбург (343)384-55-89 Иваново (4932)77-34-06 **И**жевск (3412)26-03-58 **К**азань (843)206-01-48

Калининград (4012)72-03-81 **К**алуга (4842)92-23-67 **К**емерово (3842)65-04-62 **К**иров (8332)68-02-04 **К**раснодар (861)203-40-90 Красноярск (391)204-63-61 **К**урск (4712)77-13-04 **Л**ипецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 **Н**абережные Челны (8552)20-53-41 **С**аратов (845)249-38-78

Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 **П**енза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 **Р**язань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40

Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 **Т**верь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 **У**льяновск (8422)24-23-59 Уфа (347)229-48-12 **Ч**елябинск (351)202-03-61 Череповец (8202)49-02-64 **Я**рославль (4852)69-52-93

сайт: http://smc.nt-rt.ru || эл. почта: scw@nt-rt.ru

Технологическая схема производства пива

Линия сжатого воздуха

Фильтр-регулятор/IW

Очищает сжатый воздух и регулирует давление в линии контрольно-измерительной аппаратуры.

Увеличивает расход воздуха. Увеличивает скорость срабатывания приводов трубопроводной арматуры

Позиционер/IР

Управляет приводом трубопроводной арматуры

4 Клапан блокировки/IL

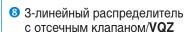
Обнаруживает падение управляющего давления сжатого воздуха и сохраняет рабочее положение клапана до момента, когда давление восстановится.

Осушитель сжатого воздуха (для продувки шкафов)/IDF

Создает избыточное давление внутри шкафа управления (ШУ) для исключения попадания пыли. Осушая воздух, предотвращает выпадение конденсата внутри ШУ.

Последовательный интерфейс управления

DeviceNet CC-Link V2

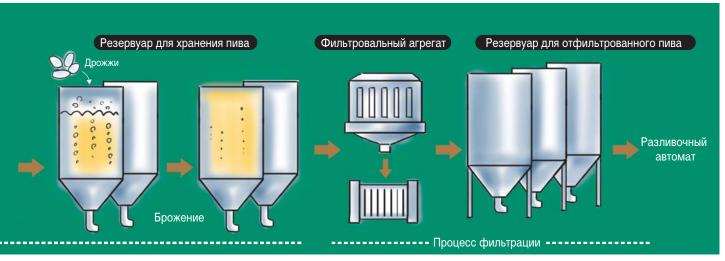


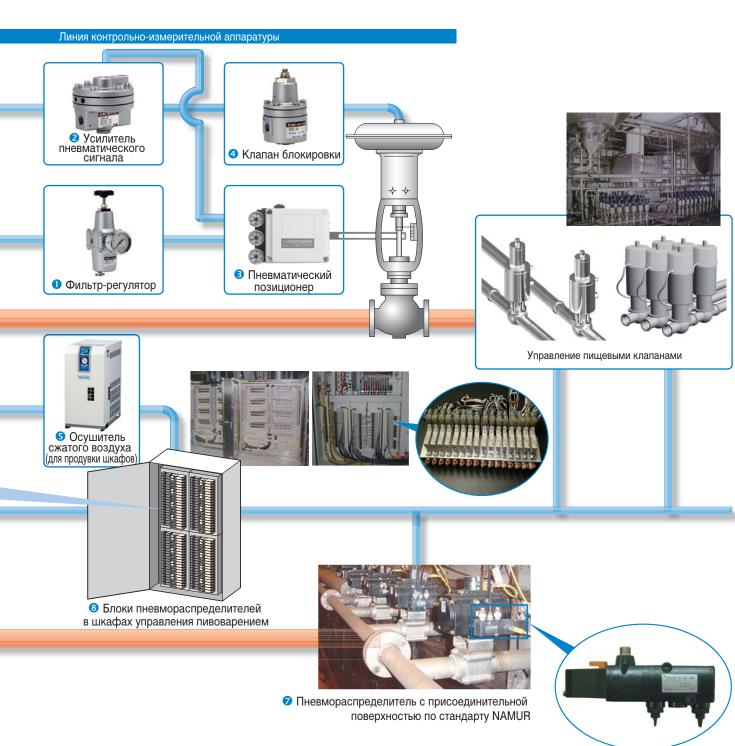
Пневмораспределители

Блок распределителей для пневматического управления пищевыми клапанами и т.п.

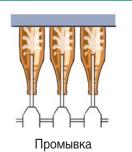
Электромагнитный распределитель для управления пневматическими пищевыми клапанами и т.п. Стандарт NAMUR

Электромагнитные распределители, установленные в шкафу, управляют отсечными, продувочными клапанами и дисковыми затворами. VQZ 4/2 можно заменить на 3/2 распределитель.





Оборудование SMC в технологии пивоварения



Технологическая схема производства пива

Моечное устройство

Регулировка промывочной жидкости с.12

<Оборудование из фторполимера> •Клапан с пневматическим управлением/**LV**

●Фитинги/LQ

•Трубки/ TL/TH/TD/TLM

•Пневматическая помпа/

3

Транспортировка Транспортировка емкостей

Регулировка ширины и высоты линии (предотвращение падения)

Регулирует ширину и высоту конвейерной линии в соответствии с шириной и высотой емкости.

•Многопозиционный цилиндр

•3-позиционный цилиндр/

•4-позиционный цилиндр/ **CXS** по специальному

•Электропривод/LEFS

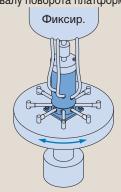
Разливочный автомат

Укупоривание крышками

Регулировка давления в резервуаре/ Розлив

Электропневматический регулятор/ITV

•Прецизионный регулятор/



Вращательная часть

•Поворотное соединение/ **MQR**

Подводит сжатый воздух к вращающимся частям и валу поворота платформы

Нажимная часть

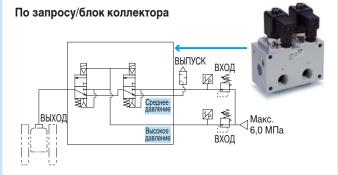
•Стандартный цилиндр

Технологическая схема производства пива

Упаковка в полиэтиленовую пленку

Нейтрализатор статического электричества/IZ□

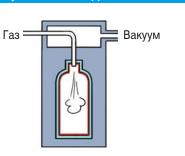
Изготовление ПЭТ-бутылок



Изготовление ПЭТ-бутылок

2/2 клапан с электропневматическим управлением, нормально закрытый VCH42

2/2 клапан с электропневматическим управлением, нормально открытый VCH41



○Пример управления цилиндром

Барьерное покрытие (осаждение)

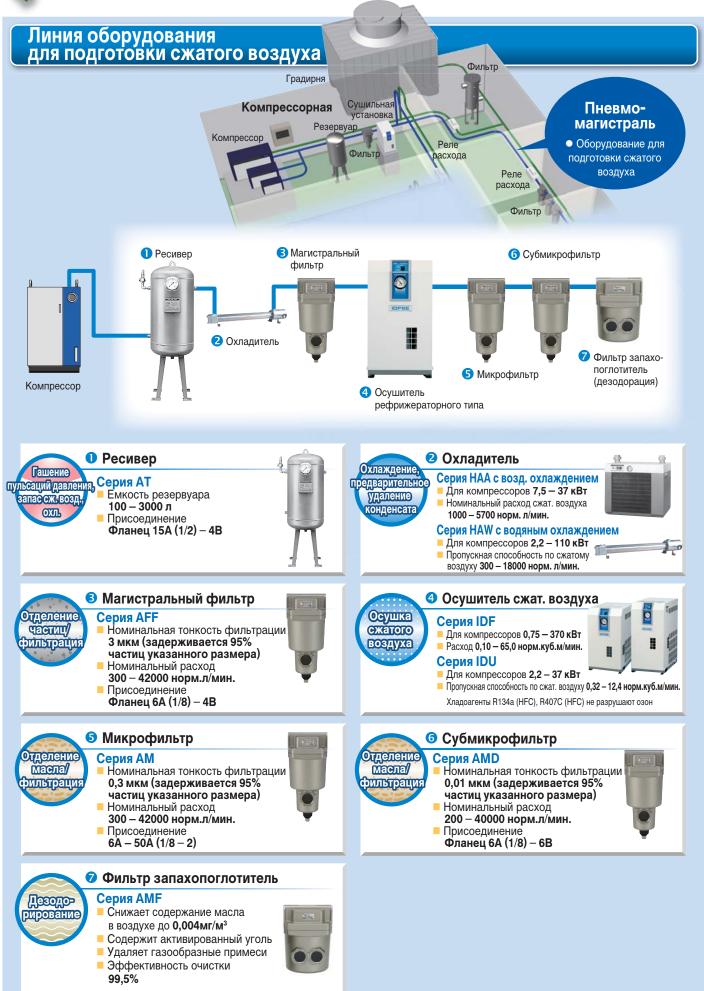
Напыляет тонкий слой углерода на внутренней поверхности бутылки из полиэтилентерефталата. ПЭТ-бутылка с превосходным барьером против кислорода и углекислого газа.

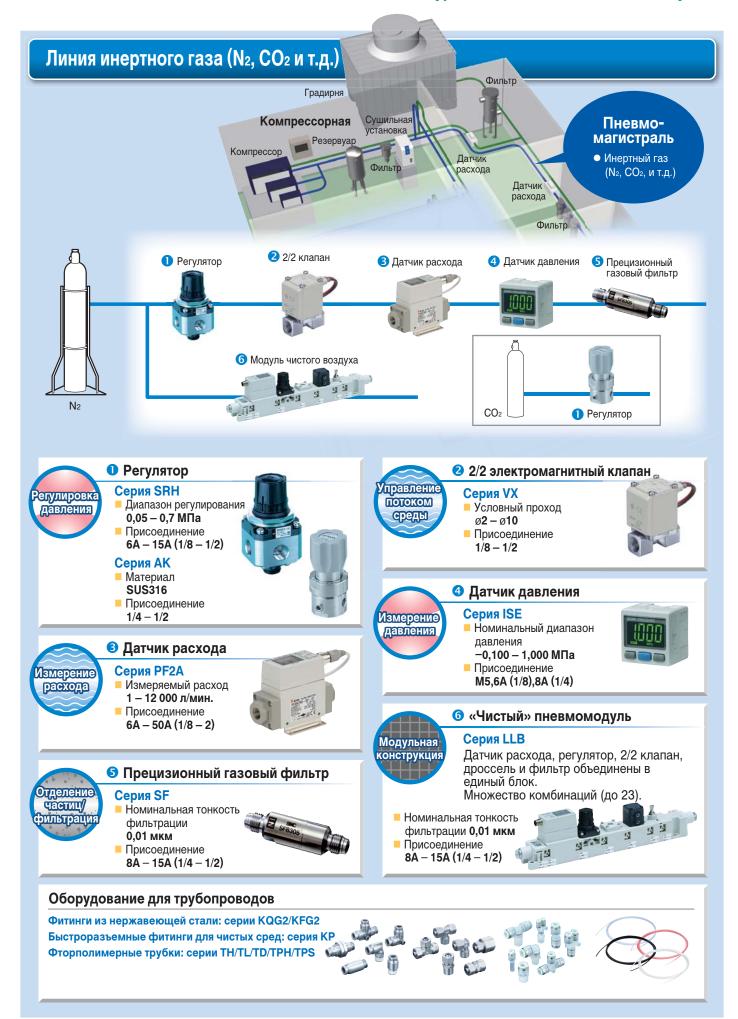
Вакуумное осаждение

Высоковакуумный клапан/XL,XM/XY

•Оборудование для специальных газов/АР

Фильтр для чистых производств/SF




•Датчик давления/ZSE/ISE

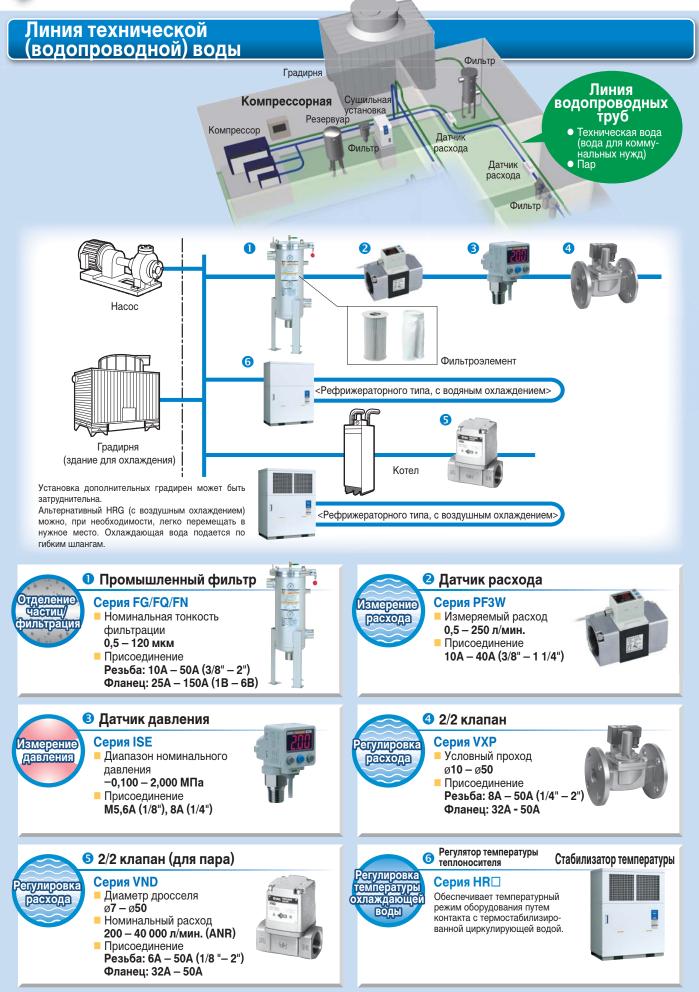
Оборудование для трубопроводов пивоваренного завода

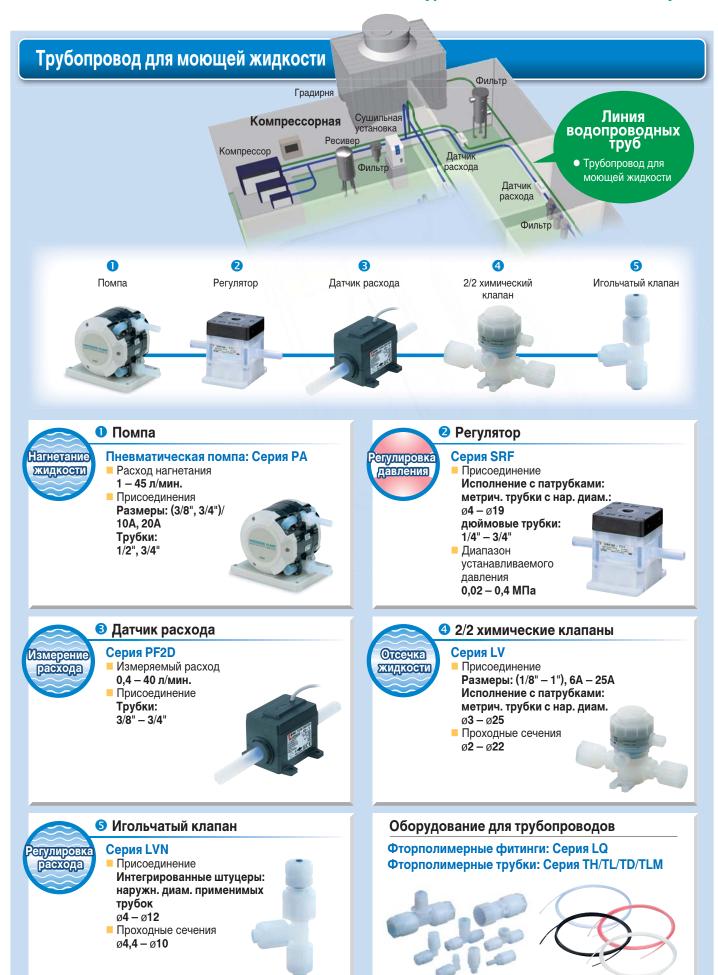
Рекомендуемая схема подготовки сжатого воздуха

Главная магистраль	Ветвь пневмомагистрали
--------------------	------------------------

											Главная	магистраль	Ветвь п	невмома	гистрали	
Класс		с. число ч		1 м ³			Влага чка росы	lacc	Масло Содержание	Оборудование	Ресивер	Охладитель воздушный Охладитель водяной	Магистраль- ный фильтр	Рефриже осуш	раторный итель	
		азмер час 0,10 < d ≤ 0,5					ат. воздуха 0,7 МПа)	 	масла мг/м ³	Модель	AT	HAA, HAW	AFF	IDF	IDU	
1	-	100	1	0	U WIWI		°C	1	≤ 0,01	Пропускная способность (норм. л/мин.)	Объем 100 — 3000 л	1000 - 5700	300 – 42 000	100 - 65 000	320 - 12 500	
3	-	100 000	1 000	500	-	- 2	≤ -70 ≤ -40	3	≤ 0,1 ≤ 1	Макс. темп-ра воздуха	100 °C	300 - 18 000 70 °C 70 °C, 180 °C	60 °C	50 °C	80 °C	
5	-	-	_	1 000		4	≤ - 20 ≤ + 3	4	≤ 5	на входе Номинальная	100 0	(в зависимости от модели)		00 0	00 0	
7					≤ 40 ≤	10 6	≤ +7 ≤ +10	}		тонкость фильтрации			3 MKM (99 %)			
	Пример обозначения: Класс чистоты сжатого воздуха по ISO 8573-1 1,4,2 Это следует понимать так: по твердым частицам "класс 1", по влаге "класс 4", по маслу "класс 2"									Содержание масла на выходе						
			Сод	держан	іие заг	рязнени	й в воз	здух	(e	(Макс.) (1)						
Схема	Обл	асти	Вла	ага	Твердые частицы	Масляный туман ⁽¹⁾	Степень	Запах масла	Класс чистоты воздуха (2)	Степень очистки воздуха						
			Точка росы	Содержание водяного пара	Твер	Масл	Степень	Запах	Класс чисте воздуха ⁽	Точка росы при атм. давлениии [входное давление 0,7 МПа]				—17 °C Температура на входе 35 °C	—17 °C Температура на входе 55 °C	
	Сжатый во:	здух общего	0.00													
A	• Обдув пог для удале • Пневмоин	здух общего ачения верхностей ения пыли нструменты азначения	6°С при атм. давлении 40°С при давлении 0,7 МПа	7 г/н.м ³ (0,7 МПа, при 25 °C)	3 мкм				3, -, -		Гашение пульсации давления, запас сж. возд., охл. Ресивер	Охлаждение Охладители возд. и водяного типов	Отделение конденсата, фильтрация Магист-			
	Сухой • Для тех зад	воздух дач, что и	U,7 IVII IA		Эффективност фильтрации 99%	b —			3, 4, -			Необходимо выбрать один из двух	ральный фильтр			
В	значительн дения возд проводах	о в условиях ного охлаж- цуха в трубо-					_		3, 5, - 3, 6, -	содержит	рессорная устан встроенный реси ресивер не треб	овка пвер, то поступат нагревае поступат нагревае в резуль	ется для компресс ельного действия, этся до высокой те тате чего образуют образные загрязне	в которых воздух мпературы, гся частицы сажи,		
С	• Пневмооб		От -14 до -23°C		0,3 мкм /Эффективност фильтрации 99,9%	1		Да	2, 4, 3 2, 5, 3 2, 6, 3	Компрессор	AT	НАА или НАW	AFF	Снижение содержания водяного пара Рефрижераторный осушитель		
D	•Высококачест	ізмерительное е стка х деталей	при атм. давлении От 15	0,8 — 1,7 г/н.м ³		Макс. 0,1 мг/н.м ³ 0,08 ppm	3		1, 4, 2 1, 5, 2 1, 6, 2	возвратно- поступательного действия		НАА Применяется для	Применяется для компрессоров	IDF IDF		
E	• При отсутстви рефрижерато осушителей в • Встроенное о (в станках. 3-	ХОЙ ВОЗДУХ ии орных в подсистемах оборудование мерных изме-	до 3°С при давлении 0,7 МПа		0.01 MKN	Макс. 0,01 мг/н.м ³ 0,008 ppm	Не более		1, 4, 1		Применяется для компрессоров мощностью 5,5 кВт (7 л.с.) –	компрессоров мощностью 7,5 кВт (10 л.с.) — 37 кВт (50 л.с.)	мощностью 2,2 кВт (3 л.с.) — 240 кВт (320 л.с.)	Точка росы на выходе	Снижение содержания водяного пара	
F	• Взбалтывани ровка, осушк • Пищевое про (за исключен	ванный воздух не, транспорти- на и упаковка ризводство			Эффективност фильтрации 99,9%		35 частиц размером свыше 0,3 мкм	Нет	1, 5, 1 1, 6, 1		220 кВт (300 л.с.)	НАМ Применяется для компрессоров мощностью 2,2 кВт (3 л.с.) — 110 кВт (150 л.с.)		10 °C (при давл. 0,7 МПа и входной темп-ре воздуха 35 °C) Применяются для компрессоров	Рефрижераторный осушитель (повышенная темп-ра возд. на входе)	
G	• Сушка элект понентов и р перед напол	ровка порош- к материалов при низких	От -30 до -60 °C при атм. давлении	0,02 — 0,5 г/н.м ³		Макс. 0,01 мг/н.м ³ 0,008 ppm	- в 10 л воздуха	Да	1, 1, 1	Винтовой компрессор		соде	и компрессорная ержит встроенны льный охладител	мощностью 0,75 кВт (1 л.с.) – 370 кВт (500 л.с.) установка и охладитель,	Точка росы на выходе 10 °C (при давл. 0,7 МПа и входной темп-ре	
Н	Чистый воздух сн (для чистых • Обдув полупров	низкой точкой росы помещений) водниковых ов в чистых	От -6 до -42°С при давлении 0,7 МПа		0,01 мкл Эффективност фильтрации 99,99%	0,004	Число частиц размером свыше 0,1 мкм в 6 л воздуха равно 0	Нет	1, 2, 1 1, 3, 1	не требуе они маль	ется (на выходе і	ий давления ресив винтового компреси ется только для воздуха.	ерсора		воздуха 55 °С) Применяются для компрессоров мощностью 2,2 кВт (3 л.с.) — 75 кВт (100 л.с.)	

Примечание 1) Содержание масла в сжатом воздухе на выходе из компрессора составляет не более 30 мг/норм куб.м. Примечание 2) Максимальный уровень качества для системы в соответствие с ISO8573-1: 2001. Однако зависимость от свойств входящего в систему воздуха может проявляться.




Локальный участок пневмомагистрали													
Водоот- делитель	Микро- фильтр	Адсорбци- онный осушитель	Субмикро- фильтр с пред- фильтром	Субмикро- фильтр	Мембр осуш	итель	Фильтр сверхтонкой очистки	Фильтр запахо- поглотитепль	Прецизион- ный воздуш- ный фильтр	Прецизион- ные газовые фильтры			
AMG	AM	ID	AMH	AMD	ID	G	AME	AMF	SFD	SFA, SFB, SFC			
300 -	12 000	80 – 780	200 – 12 000	200 – 40 000	10 – 1000	75 – 300 50 – 150	200 – 12 000	200 – 40 000	100 – 500	26 – 300			
60	°C	50 °C	60	°C	50 °C, 55 °C (в зависимости от модели)	50 °C	60	°C	45 °C	80 °C, 120 °C (в зависимости от модели)			
Удаление не менее 99% жидкой воды	0,3 MKM (99,9 %)		0,01 мкм (встроенный предфильтр 0,3 мкм)	0,01 MKM (99,9 %)				мкм 9 %)	0,01 мкм (99,99 %)	0,01 мкм (99,99 %)			
	1 мг/норм.м ³ [экв. 0,8 ppm]		11	норм.м ³ 08 ppm]			0,01 мг/норм.м ³ [экв. 0,008 ppm]	0,004 мг/норм.м ³ [экв. 0,0032 ppm]					
							Не более 35 частиц размером более 0,3 мкм на 10 л			Число частиц размером более 0,1 мкм в 6 л воздуха равно нулю			
		—30 °С			—15 °C) —20 °C Температура на входе 25 °C	—40 °С —60 °С Температура на входе 25 °С							
Отделение воды в жид. фазе Водоотделитель													
	Отделение масл. тумана, фильтрация Микрофильтр												
				Отделение масл. тумана, фильтрация Субмикрофильтр									
	АМ Комбинация фи (фильтр 0,01 мк предфильтром 0	льтров АМ и АМD м со встроенным 0,3 мкм)	Отделение масл. тумана, фильтрация Супермикрофильтр с предфильтром	AMD	Снижение сод. водяного пара (глубокая осушка)		Фильтрация						
			AMH	*	Мембранный осушитель		Фильтр сверхтонкой очистки АМЕ	Оснащен индика насыщения масл	тором				
					-1520 °C	п ри атм. давл.: Па при 25°C)	••	Дезодорация Фильтр запахо- поглотитель					
	AM	Снижение сод. водяного пара глубокая осушка)	AMH	AMD		Снижение сод. водяного пара (глубокая осушка)	AME	AMF					
	AM	Адсорбцион- ный осушитель		AMD		Мембранный осушитель	AME		Преци	зионная			
	-	Точка росы при -3050 °C (на вх. 0,7 МПа г	"			IDG Точка росы пр -4060 °C			Прецизионный воздушный фильтр	трация			
	AM	ID		AMD		На вх. 0,7 МПа	при 25°C) АМЕ	AMF	SFD	OFA JOFD JOFA			
			AMH			IDG			Прецизионны газовые фил	SFA/SFB/SFC ые ьтры			

Оборудование для трубопроводов пивоваренного завода

Оборудование SMC в технологии пивоварения

Оборудование для трубопроводов (фитинги и трубки)

Самозапирающиеся соединения

Серия КК

- Рабочая среда: воздух, вода
- Штекеры для трубок с наружн.
- Штекеры для гибких шлангов

Самозапирающиеся соединения из нержавеющей стали 304

Серия ККА

- Рабочая среда:
- воздух, вода
- Присоединение 6A - 50A (1/8" - 1 1/2")

Быстроразъемные фитинги

Серия KQ2

- Рабочая среда: воздух
- Наруж. диам. трубкок 04 - 016

Латунные быстроразъемные фитинги

Серия KQB2

- Рабочая среда:
- воздух, вода
- Наружн. диам. трубок ø4 – ø12

Фитинги с накидной гайкой 🚮

Серия КБ

- Рабочая среда: воздух, пар (латунная втулка); воздух (полимерная втулка) Латунная муфта
- Наружн. диаметр трубок 04 - 012

Каучуковая муфта

Самоцентрирующиеся фитинги

Серия H/DL/L/LL

- Рабочая среда:
 - воздух
- Наружн. диам. трубок 04 - 012

Быстроразъемные фитинги из нерж. стали 316

Серия KQG2

- Рабочая среда:
- воздух, вода, пар
- Наружн. диам. трубок ø4 – ø12

Фитинги из нерж. стали 316 с накидной гайкой

Серия KFG2

- Рабочая среда:
- воздух, вода, пар
- Наружн. диам. трубок ø4 – ø12

Фторполимерные фитинги

Серия LQ

- Рабочая среда:
- деионизированная вода, химические продукты и т. д. (для получения более подробной информации свяжитесь с компанией SMC)
- Наружн. диам. трубок
- ø3 ø25

Быстроразъемные фитинги для чистого производства

Серия КР

- Рабочая среда:
- воздух, N₂, вода (деионизированная вода) (для получения подробностей свяжитесь с компанией SMC)
- Наружн. диам. трубок ø4 – ø12

Трубки

Серия Т□

Примечание) Для получения более подробной информации свяжитесь с компанией SMC

Серия	Материал	Текучая среда	Наруж. диам.
T	Нейлон	Воздух, вода	ø4 – ø16
TS	Мягкий нейлон	Воздух	ø4 – ø16
TU	Полиуретан	Воздух, вода	ø4 – ø16
TUS	Мягкий полиуретан	Воздух	ø4 – ø12
TUH	Жесткий полиуретан	Воздух	ø4 – ø12
TPH, TPS	Полиолефины	Воздух, N ₂ , вода (деионизированная вода) Примечание)	ø4 – ø12
TH	FEP (фторполимер)	Воздух, вода, инертный газ	ø4 – ø12
TD	РТFE (мягкий фторполимер)	Воздух, вода, инертный газ	ø4 – ø12
TL	PFA (фторполимер)	Примечание) Деионизированная вода, химические продукты и т.д.	ø4 – ø19

Длина: бухты до 500 метров, но максимальная длина бухты зависит от материалов

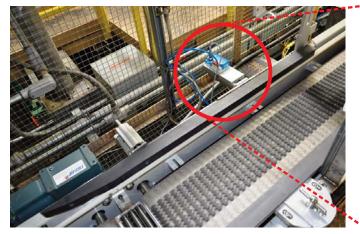
и наружного диаметра трубок. Для получения подробностей свяжитесь с компанией SMC.

Позиционирующий цилиндр

Цилиндр серии МРС

Модульный блок

- Цилиндр
- Пневмораспределитель
- Линейный позиционер
- Контроллер


Интегрированный в цилиндр контроллер, получив аналоговый сигнал 0–10 вольт или 4–20 мА от линейного датчика обратной связи, обеспечит остановку поршня цилиндра точно в заданном положении. Скорость штока устанавливается заранее. Пуск и останов цилиндра осуществляется путем переключения контроллером управляющих распределителей. Распределители нормально закрыты, что в случае отключения энергии обеспечивает безопасный останов.

от идей 🗪 к инновациям

«Регулирование вылета направляющих на транспортерах»

Задача ориентации тары на транспортере часто решается с помощью реечных направляющих. Необходимость их перенастройки, периодически возникает в зависимости от производственных задач. Такие операции в основном выполняются вручную, что затратно по времени и порой приводит к ошибкам, и аварийным остановам. Применение цилиндра МРС, полностью автоматизирует процесс настройки. Исключается аварийность, сокращается время простоя оборудования. Данное решение значительно повышает производительность транспортных систем, что особенно важно в условиях массового производства.

Присоединительная поверхность по стандарту NAMUR

Моющийся пневмораспределитель

VFN2120N-X23 / VFN2120N-X36

Характеристики:

Гигиеничная конструкция

Полимерный корпус с минимумом неровностей Возможна непосредственная очистка клапана (IP67).

Изменение 3-линейности на 5-линейность

Достаточно перевернуть переходную плиту

Низкое энергопотребление

Потребляемая мощность 0,5 Вт

(сопоставимая модель: 1,8 Вт постоянного тока)

Соответствие СЕ

Исполнения с резьбами: NPT1/4 или G1/4

VFN2120N-X23

Электрический разъем: Перпендикулярно подводу сжатого воздуха

VFN2120N-X36

Электрический разъем: Параллельно подводу сжатого воздуха

Технические характеристики:

Характеристики клапана

Рабочая среда	Воздух
Рабочий диапазон давления	0,15 − 0,9 MΠa
Темп-ра окруж. воздуха и рабочей среды	от -10 до 60 °C
Смазка	Не требуется
Вспомогательное ручное управление	кнопка / с ручной фиксацией или с помощью инструмента
Степень защиты	IP67
Присоединительная резьба	1/4"
Пропускная способность (Сv / эквив. сечение)	0,8 / 11 мм²

Характеристики катушек

Номинальное напряжение	24 В пост. тока
Допустимые отклонения напряжения	от -15 до +10%
Тип изоляции катушки	Класс В
Энергопотребление	0,5 Вт

Для воздуха, газа, пара, воды, масла

2-линейный клапан с электропневматическим управлением

Серия VXP21/22/23

Характеристики:

Широкий выбор комбинаций.

Возможность работы с разнообразными средами.

Клапан можно адаптировать к специальному применению путем выбора материала корпуса (латунь, бронза или нержавеющая сталь), материала уплотнения (NBR, PTFE, EPDM или FKM) и катушки электромагнита (класс В или Н).

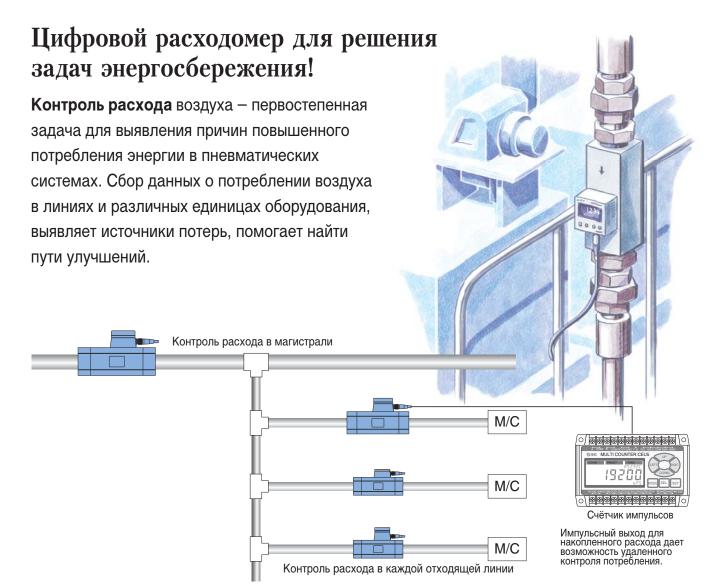
Простая разборка и повторная сборка за короткое время.

Исполнение с фланцами.

(32A-50A)

H.O.

Датчик расхода воздуха с цифровой индикацией


Серия PF2A

Характеристики:

- Встроенный или выносной дисплей
- Дискретный выход, выход для накопленного расхода, аналоговый выход
- Способность переключения с накопленного расхода на мгновенный и обратно
- IP65

Серия	Диапазон расхода (л/мин)	Присоединение
	1 – 10	1/8", 1/4"
	5 – 50	1/8", 1/4"
	10 – 100	3/8"
PF2A	20 – 200	3/8"
FFZA	50 - 500	1/2"
	150 — 3000	1"
	300 - 6000	1 1/2"
	600 - 12000	2"

Увеличьте конкурентоспособность вашего оборудования!

Градирня

Компрессорная Сушильная

Потребление воздуха

Автоматическая система поиска утечек (AL

Задача:

Автоматическое обнаружение утечек в системах сжатого воздуха

Предыстория:

Экспертами SMC была проведена серия аудитов пневматических линий, которая выявила устойчивую закономерность. Более 20% сжатого воздуха теряется из-за несовершенных конструкций пневматических систем и прямых утечек. Общий объем этих потерь в Европе достигает 2.3 миллиарда евро.

Цель:

Разработать простое, экономичное устройство, входящее как элемент в конструкцию машины и позволяющее вести автоматический поиск утечек в её пневматических линиях без остановки производства.

Обоснование:

Рыночные условия определяют интенсивную эксплуатацию оборудования, которое работает по 24 часа в сутки по 5 или даже 7 дней в неделю. Интенсивная эксплуатация приводит к значительному износу оборудования, его пневматических линий, а полная загруженность не дает возможность вовремя находить неисправности в пневмолиниях, которые ведут к поломкам и остановкам производства. Кроме того, использование ультразвукового течеискателя трудоемко и в данном случае экономически не оправдано.

Решение:

ALDS – разработка SMC. Экономичная автоматизированная система поиска утечек.

аспределение

воздуха

Датчик

расхода

Преимущества:

При включении блока ALDS в состав машины он позволит:

- Обнаружить утечки воздуха в момент их появления на основе ежедневного мониторинга
- Установить точный размер утечек в нл/мин
- Снабдить персонал детальным отчетом о локализации утечек, без необходимости проверять каждый компонент отдельно
- Определять источник потерь без остановки оборудования
- Интегрироваться в управляющую систему машины без специального программного обеспечения.

Принцип работы:

Конструктивно блок ALDS состоит из стандартного расходомера PFM и переключающего клапана. Устройство монтируется на входной порт машины. Клапан управляется программным модулем, интегрированным в основную программу управления машиной.

Программный модуль «цикл поиска утечек» позволяет автоматически проверить каждую пневматическую цепь и сравнить полученные данные с предыдущими измерениями. Данные могут быть представлены в виде отчета обслуживающему оборудование персоналу, обеспечивая максимальную эффективность в поиске и устранении утечек.

Ключевое устройство ALDS:

Это цифровой расходомер воздуха — PFM с двуцветным дисплеем.

Являясь ключевым компонентом системы, расходомер PFM, созданный на основе MEMS-технологий (Micro-Electro-Mechanical-Systems), позволяет на высокой скорости вести точнейшие измерения расхода воздуха в различных диапазонах.

PFM работает с осушенным воздухом, №, Аг, и СО₂ PFM — чрезвычайно компактен и легок. Двуцветный дисплей позволяет с первого взгляда оценить состояние контролируемого объекта. В прибор встроен дроссель, что дает дополнительную возможность регулировки

Дополнительная информация:

За дополнительной информацией по ALDS (система автоматизированного поиска утечек), а также по расходомеру PFM, просим обращаться в ближайший офис SMC или к представителю компании в вашем регионе

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 **А**стана +7(7172)727-132 **Б**елгород (4722)40-23-64 **Б**рянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 **Е**катеринбург (343)384-55-89 **И**ваново (4932)77-34-06 **И**жевск (3412)26-03-58 **К**азань (843)206-01-48

Калининград (4012)72-03-81 **К**алуга (4842)92-23-67 **К**емерово (3842)65-04-62 **К**иров (8332)68-02-04 **К**раснодар (861)203-40-90 **К**расноярск (391)204-63-61 **К**урск (4712)77-13-04 **Л**ипецк (4742)52-20-81 **М**агнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93

Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 **Р**язань (4912)46-61-64 Самара (846)206-03-16 **С**анкт-Петербург (812)309-46-40 **Н**абережные Челны (8552)20-53-41 **С**аратов (845)249-38-78

Смоленск (4812)29-41-54 Сочи (862)225-72-31 **С**таврополь (8652)20-65-13 **Т**верь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 **У**льяновск (8422)24-23-59 Уфа (347)229-48-12 **Ч**елябинск (351)202-03-61 **Ч**ереповец (8202)49-02-64 **Я**рославль (4852)69-52-93

сайт: http://smc.nt-rt.ru || эл. почта: scw@nt-rt.ru